最新公告
  • 欢迎光临助梦资源网,下载网课资源、学习资料、复习资料、知识点总结、电子课本来助梦资源网!立即加入钻石VIP
  • 高三年级下册数学必修二知识点

    正文概述 硫化钠   2022-05-27   0

    【#高三# 导语】奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。©高三频道给大家整理的《高三年级下册数学必修二知识点》供大家参考,欢迎阅读!

    1.高三年级下册数学必修二知识点


      等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

      面积公式

      若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

      S=ab/2。

      且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

      S=ch/2=c2/4。

      等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

    2.高三年级下册数学必修二知识点


      1.等差数列通项公式

      an=a1+(n-1)d

      n=1时a1=S1

      n≥2时an=Sn-Sn-1

      an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

      2.等差中项

      由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

      有关系:A=(a+b)÷2

      3.前n项和

      倒序相加法推导前n项和公式:

      Sn=a1+a2+a3+·····+an

      =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

      Sn=an+an-1+an-2+······+a1

      =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

      由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

      ∴Sn=n(a1+an)÷2

      等差数列的前n项和等于首末两项的和与项数乘积的一半:

      Sn=n(a1+an)÷2=na1+n(n-1)d÷2

      Sn=dn2÷2+n(a1-d÷2)

      亦可得

      a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

      an=2sn÷n-a1

      有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

    3.高三年级下册数学必修二知识点

      1、异面直线的问题

      ①异面直线定义:不同在任何一个平面内的两条直线

      ②异面直线性质:既不平行,又不相交。

      ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

      ④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

      求异面直线所成角步骤:

      A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

      B、证明作出的角即为所求角C、利用三角形来求角

      (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

      (8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点。

      三种位置关系的符号表示:aαa∩α=Aa‖α

      (9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线。α∩β=b

      2、空间中的平行问题

      (1)直线与平面平行的判定及其性质

      线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

      线线平行线面平行

      线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行

      (2)平面与平面平行的判定及其性质

      两个平面平行的判定定理

      (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

      (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

      (3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

      (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

      (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

      3、空间中的垂直问题

      (1)线线、面面、线面垂直的定义

      ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

      ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

      ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

      (2)垂直关系的判定和性质定理

      ①线面垂直判定定理和性质定理

      判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

      性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

      ②面面垂直的判定定理和性质定理

      判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

      性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

      4、空间角问题

      (1)直线与直线所成的角

      ①两平行直线所成的角:规定为。

      ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

      ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

      (2)直线和平面所成的角

      ①平面的平行线与平面所成的角:规定为。

      ②平面的垂线与平面所成的角:规定为。

      ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

      求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

      在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:

      (1)斜线上一点到面的垂线;

      (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

      (3)二面角和二面角的平面角

      ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

      ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

      ③直二面角:平面角是直角的二面角叫直二面角。

      两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

      ④求二面角的方法

      定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

      垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

    4.高三年级下册数学必修二知识点


      1.函数的奇偶性

      (1)若f(x)是偶函数,那么f(x)=f(-x);

      (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

      (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

      (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

      2.复合函数的有关问题

      (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

      (2)复合函数的单调性由“同增异减”判定;

      3.函数图像(或方程曲线的对称性)

      (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

      (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

      (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

      (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

      (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

      4.函数的周期性

      (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

      (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

      (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

      (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

      (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

      (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

    5.高三年级下册数学必修二知识点


      (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

      (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

      (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

      (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

      (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

      (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

    请支持知识付费阅读!感谢!

    推荐度:

    登录后免费下载文档


    网课资源_学习资料_复习资料_知识点总结_电子课本—助梦资源网 » 高三年级下册数学必修二知识点

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源均由会员上传,版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿商用。如侵犯了您的权益,请联系我们删除。
    下载地址过期失效怎么办?
    请联系qq客服或者微信客服,获取新下载地址,客服具体上班时间请查看网站首页!
    资源缺少内容怎么办?
    请联系qq客服或者微信客服,修补资源。
    获取其它帮助?
    请QQ联系我们

    发表评论

    如需获取其它帮助,请联系我们

    联系助梦资源网

    请选择支付方式

    ×
    微信支付
    余额支付
    ×
    微信扫码支付 0 元