最新公告
  • 欢迎光临助梦资源网,下载网课资源、学习资料、复习资料、知识点总结、电子课本来助梦资源网!立即加入钻石VIP
  • 资源简介:

    大学学习 统计机器学习 全8讲——更多资源,课程更新在

    大学学习 统计机器学习 全8讲

    索引: Outline(00:00:08)

    Challenging problems(00:00:19)

    Data Mining(00:00:53)

    Machine Learning(00:02:15)

    Application in PR(00:03:14)

    Difference(00:03:28)

    Biometrics(00:04:04)

    Bioinformatics(00:04:39)

    ISI(00:05:08)

    Confusion(00:05:34)

    统计机器学习基础研究(00:06:00)

    Machine learning community(00:06:31)

    学习(00:06:55)

    Performance(00:08:15)

    学习(00:08:19)

    Performance(00:08:22)

    More(00:08:53)

    Theoretical Analysis(00:09:11)

    Ian Hacking(00:09:44)

    Statistical learning(00:10:28)

    Andreas Buja(00:10:46)

    Interpretation of Algorithms(00:11:22)

    统计学习(00:11:58)

    Main references(00:13:18)

    Main kinds of theory(00:13:39)

    Definition of Classifications(00:14:02)

    统计学习(00:14:23)

    Main kinds of theory(00:15:21)

    Definition of Classifications(00:15:22)

    Definition of regression(00:15:50)

    Several well-known algorithms(00:16:27)

    Framework of algorithms(00:17:02)

    Designation of algorithms(00:17:58)

    统计决策理论(00:18:39)

    Bayesian:classification(00:19:26)

    统计决策理论(00:20:10)

    Bayesian:classification(00:20:13)

    Bayesian: regression(00:20:18)

    统计决策理论(00:20:55)

    Bayesian:classification(00:21:00)

    Bayesian: regression(00:21:17)

    Estimating densities(00:21:25)

    KNN(00:22:45)

    Interpretation:KNN(00:23:20)

    高维空间(00:24:15)

    维数灾难(00:25:01)

    维数灾难(00:25:50)

    维数灾难:其它体现(00:26:45)

    LMS(00:27:33)

    Interpretation: LMS(00:29:57)

    维数灾难(00:30:57)

    KNN(00:30:58)

    Designation of algorithms(00:30:59)

    Designation of algorithms(00:31:00)

    统计决策理论(00:31:01)

    Estimating densities(00:31:18)

    高维空间(00:31:19)

    维数灾难:其它体现(00:31:20)

    Interpretation: LMS(00:31:21)

    Fisher Discriminant Analysis(00:31:40)

    Interpretation: FDA(00:32:35)

    FDA and LMS(00:33:04)

    FDA: a novel interpretation(00:33:38)

    FDA: parameters(00:34:24)

    FDA: framework of algorithms(00:35:09)

    Disadvantage(00:35:59)

    Bias and variance analysis(00:36:44)

    Bias-Variance Decomposition(00:37:17)

    Bias-Variance Tradeoff(00:38:46)

    Bias-Variance Decomposition(00:38:52)

    Bias-Variance Tradeoff(00:39:05)

    Interpretation: KNN(00:40:29)

    Ridge regression(00:41:35)

    Interpretation: ridge regression(00:42:03)

    Ridge regression(00:42:43)

    Interpretation: ridge regression(00:43:05)

    Interpretation: parameter(00:43:28)

    Interpretation: ridge regression(00:43:35)

    Interpretation: parameter(00:43:37)

    A note(00:44:32)

    Other loss functions(00:45:39)

    Interpretation: boosting(00:46:35)

    Boosting方法的由来(00:47:22)

    Boosting方法流程(AdaBoost)(00:48:18)

    Interpretation: margin(00:48:47)

    Interpretation: SVM(00:49:43)

    SVM: experimental analysis(00:50:48)

    Interpretation: base learners(00:51:57)

    Disadvantage(00:52:38)

    Generalization bound(00:53:15)

    PAC Frame(00:54:16)

    VC Theory and PAC Bounds(00:54:44)

    PAC Bounds for Classification(00:55:38)

    VC Dimension(00:55:51)

    PAC Bounds for Classification(00:55:52)

    VC Dimension(00:56:27)

    A consistency problems(00:57:39)

    Remarks on PAC+VC Bounds(00:58:33)

    SVM: Linearly separable(00:59:21)

    SVM: soft Margin(01:00:28)

    SVM: Linearly separable(01:01:12)

    SVM: soft Margin(01:01:22)

    SVM: algorithms(01:01:59)

    泛化能力的界(01:03:01)

    Bound: VC Dimension(01:04:04)

    Bound: VC dimension+errors(01:04:45)

    Disadvantages of SRM(01:05:52)

    Disadvantage: PAC+VC bound(01:06:52)

    Several concepts(01:07:51)

    Disadvantage: PAC+VC bound(01:08:00)

    Several concepts(01:08:02)

    Generalization Bound: margin(01:08:35)

    Importance of Margin(01:09:48)

    Generalization Bound: margin(01:10:29)

    Importance of Margin(01:10:34)

    Vapnik’s three periods(01:10:35)

    Neural networks(01:11:51)

    Interpretation: neural networks(01:12:55)

    BP Algorithms(01:14:17)

    Disadvantage(01:15:42)

    The End(01:16:32)


    助梦资源网 » 大学学习 统计机器学习 全8讲

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源均由会员上传,版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿商用。如侵犯了您的权益,请联系我们删除。
    下载地址过期失效怎么办?
    请联系qq客服或者微信客服,获取新下载地址,客服具体上班时间请查看网站首页!
    资源缺少内容怎么办?
    请联系qq客服或者微信客服,修补资源。
    获取其它帮助?
    请QQ联系我们

    发表评论

    如需获取其它帮助,请联系我们

    联系助梦资源网
    热门文章

    请选择支付方式

    ×
    微信支付
    余额支付
    ×
    微信扫码支付 0 元