最新公告
  • 欢迎光临助梦资源网,下载网课资源、学习资料、复习资料、知识点总结、电子课本来助梦资源网!立即加入钻石VIP
  • 高一数学必修1知识点总结

    正文概述 爱学习   2022-08-13   0

    进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。下面给大家分享一些高一数学知识点,希望对大家有所帮助。

    高一数学必修1知识点

    集合的分类

    (1)按元素属性分类,如点集,数集。

    (2)按元素的个数多少,分为有/无限集

    关于集合的概念:

    (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

    (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

    (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

    集合可以根据它含有的元素的个数分为两类:

    含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

    非负整数全体构成的集合,叫做自然数集,记作N;

    在自然数集内排除0的集合叫做正整数集,记作N+或N-;

    整数全体构成的集合,叫做整数集,记作Z;

    有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

    实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

    1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

    有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

    例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

    无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

    2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

    例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

    而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

    {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

    大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

    一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

    它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

    例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

    高一数学必修1知识点汇总

    一、集合有关概念

    1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

    2、集合的中元素的三个特性:

    1.元素的确定性;

    2.元素的互异性;

    3.元素的无序性

    说明:

    (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

    (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

    (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

    (4)集合元素的三个特性使集合本身具有了确定性和整体性。

    3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

    1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    2.集合的表示方法:列举法与描述法。

    注意啊:常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集N-或N+整数集Z有理数集Q实数集R

    关于“属于”的概念

    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

    列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

    描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

    ①语言描述法:例:{不是直角三角形的三角形}

    ②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{---3>2}

    4、集合的分类:

    1.有限集含有有限个元素的集合

    2.无限集含有无限个元素的集合

    3.空集不含任何元素的集合例:{--2=-5}

    二、集合间的基本关系

    1.“包含”关系—子集

    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

    2.“相等”关系(5≥5,且5≤5,则5=5)

    实例:设A={--2-1=0}B={-1,1}“元素相同”

    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

    ①任何一个集合是它本身的子集。AíA

    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

    ③如果AíB,BíC,那么AíC

    ④如果AíB同时BíA那么A=B

    3.不含任何元素的集合叫做空集,记为Φ

    规定:空集是任何集合的子集,空集是任何非空集合的真子集

    高一数学必修1知识点归纳

    一、高中数学函数的有关概念

    1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

    注意:

    函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    ?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

    2.高中数学函数值域:先考虑其定义域

    (1)观察法

    (2)配方法

    (3)代换法

    3.函数图象知识归纳

    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

    (2)画法

    A、描点法:

    B、图象变换法

    常用变换方法有三种

    1)平移变换

    2)伸缩变换

    3)对称变换

    4.高中数学函数区间的概念

    (1)函数区间的分类:开区间、闭区间、半开半闭区间

    (2)无穷区间

    5.映射

    一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

    对于映射f:A→B来说,则应满足:

    (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

    (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

    (3)不要求函数B中的每一个元素在函数A中都有原象。

    6.高中数学函数之分段函数

    (1)在定义域的不同部分上有不同的解析表达式的函数。

    (2)各部分的自变量的取值情况.

    (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

    补充:复合函数

    如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

    请支持知识付费阅读!感谢!

    推荐度:

    登录后免费下载文档


    网课资源_学习资料_复习资料_知识点总结_电子课本—助梦资源网 » 高一数学必修1知识点总结

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源均由会员上传,版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿商用。如侵犯了您的权益,请联系我们删除。
    下载地址过期失效怎么办?
    请联系qq客服或者微信客服,获取新下载地址,客服具体上班时间请查看网站首页!
    资源缺少内容怎么办?
    请联系qq客服或者微信客服,修补资源。
    获取其它帮助?
    请QQ联系我们

    发表评论

    如需获取其它帮助,请联系我们

    联系助梦资源网

    请选择支付方式

    ×
    微信支付
    余额支付
    ×
    微信扫码支付 0 元