最新公告
  • 欢迎光临助梦资源网,下载网课资源、学习资料、复习资料、知识点总结、电子课本来助梦资源网!立即加入钻石VIP
  • 高一上册数学知识点

    正文概述 助力梦想   2022-08-09   0

    数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。下面是小编给大家整理的一些高一数学知识点,希望对大家有所帮助。

    高一数学必修一第一章知识点

    一、集合有关概念

    1.集合的含义

    2.集合的中元素的三个特性:

    (1)元素的确定性如:世界上的山

    (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

    (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

    (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    (2)集合的表示方法:列举法与描述法。

    注意:常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集:N或N+

    整数集:Z

    有理数集:Q

    实数集:R

    1)列举法:{a,b,c……}

    2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}

    3)语言描述法:例:{不是直角三角形的三角形}

    4)Venn图:

    4、集合的分类:

    (1)有限集含有有限个元素的集合

    (2)无限集含有无限个元素的集合

    (3)空集不含任何元素的集合例:{x|x2=-5}

    高一数学必修二知识点梳理

    1.函数的奇偶性。

    (1)若f(x)是偶函数,那么f(x)=f(-x)。

    (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

    (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

    (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

    (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

    2.复合函数的有关问题。

    (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

    (2)复合函数的单调性由“同增异减”判定。

    3.函数图像(或方程曲线的对称性)。

    (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

    (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

    (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

    (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

    (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。

    4.函数的周期性。

    (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。

    (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。

    (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。

    (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。

    5.判断对应是否为映射时,抓住两点。

    (1)A中元素必须都有象且。

    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

    6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

    7.对于反函数,应掌握以下一些结论。

    (1)定义域上的单调函数必有反函数。

    (2)奇函数的反函数也是奇函数。

    (3)定义域为非单元素集的偶函数不存在反函数。

    (4)周期函数不存在反函数。

    (5)互为反函数的两个函数具有相同的单调性。

    (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

    8.处理二次函数的问题勿忘数形结合。

    二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。

    9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。

    10.恒成立问题的处理方法。

    (1)分离参数法。

    (2)转化为一元二次方程的根的分布列不等式(组)求解。

    高一下册数学必修一知识点梳理

    立体几何初步

    柱、锥、台、球的结构特征

    棱柱

    定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    棱锥

    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

    棱台

    定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

    表示:用各顶点字母,如五棱台

    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

    圆柱

    定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

    圆锥

    定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

    圆台

    定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

    球体

    定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

    NO.2空间几何体的三视图

    定义三视图

    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

    注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

    俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    高一下册数学必修一知识点汇总

    直线和平面垂直

    直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

    直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

    直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行――没有公共点

    直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

    直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

    直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

    多面体

    1、棱柱

    棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

    棱柱的性质

    (1)侧棱都相等,侧面是平行四边形

    (2)两个底面与平行于底面的截面是全等的多边形

    (3)过不相邻的两条侧棱的截面(对角面)是平行四边形

    2、棱锥

    棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

    棱锥的性质:

    (1)侧棱交于一点。侧面都是三角形

    (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

    3、正棱锥

    正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

    正棱锥的性质:

    (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

    (3)多个特殊的直角三角形

    a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

    b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

    高一下册数学必修一知识点归纳

    幂函数的性质:

    对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

    首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=―k,则x=1/(x^k),显然x≠0,函数的定义域是(―∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

    排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

    排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

    总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

    如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

    在x大于0时,函数的值域总是大于0的实数。

    在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

    而只有a为正数,0才进入函数的值域。

    由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。

    可以看到:

    (1)所有的图形都通过(1,1)这点。

    (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

    (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

    (4)当a小于0时,a越小,图形倾斜程度越大。

    (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

    (6)显然幂函数。

    解题方法:换元法

    解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

    换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

    它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

    请支持知识付费阅读!感谢!

    推荐度:

    登录后免费下载文档


    网课资源_学习资料_复习资料_知识点总结_电子课本—助梦资源网 » 高一上册数学知识点

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源均由会员上传,版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿商用。如侵犯了您的权益,请联系我们删除。
    下载地址过期失效怎么办?
    请联系qq客服或者微信客服,获取新下载地址,客服具体上班时间请查看网站首页!
    资源缺少内容怎么办?
    请联系qq客服或者微信客服,修补资源。
    获取其它帮助?
    请QQ联系我们

    发表评论

    如需获取其它帮助,请联系我们

    联系助梦资源网

    请选择支付方式

    ×
    微信支付
    余额支付
    ×
    微信扫码支付 0 元