最新公告
  • 欢迎光临助梦资源网,下载网课资源、学习资料、复习资料、知识点总结、电子课本来助梦资源网!立即加入钻石VIP
  • 高一数学知识点重点大全

    正文概述 资料搜集者   2022-07-31   0

    总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它是增长才干的一种好办法,让我们一起认真地写一份总结吧。总结怎么写才能发挥它的作用呢?下面是小编给大家带来的高一数学知识点重点大全,以供大家参考!

    高一数学知识点重点大全

    (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

    (2)指数函数的值域为大于0的实数集合。

    (3)函数图形都是下凹的。

    (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

    (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

    (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

    (7)函数总是通过(0,1)这点。

    (8)显然指数函数无界。

    奇偶性

    定义

    一般地,对于函数f(x)

    (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

    (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

    (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

    (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

    对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

    首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

    排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

    排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

    总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

    如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

    在x大于0时,函数的值域总是大于0的实数。

    在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

    而只有a为正数,0才进入函数的值域。

    由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

    可以看到:

    (1)所有的图形都通过(1,1)这点。

    (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

    (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

    (4)当a小于0时,a越小,图形倾斜程度越大。

    (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

    (6)显然幂函数无界。

    定义:

    x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

    范围:

    倾斜角的取值范围是0°≤α<180°。

    理解:

    (1)注意“两个方向”:直线向上的方向、x轴的正方向;

    (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

    意义:

    ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

    ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

    ③倾斜角相同,未必表示同一条直线。

    公式:

    k=tanα

    k>0时α∈(0°,90°)

    k<0时α∈(90°,180°)

    k=0时α=0°

    当α=90°时k不存在

    ax+by+c=0(a≠0)倾斜角为A,

    则tanA=-a/b,

    A=arctan(-a/b)

    当a≠0时,

    倾斜角为90度,即与X轴垂直

    人教版高一数学必修一知识点梳理

    1、柱、锥、台、球的结构特征

    (1)棱柱:

    定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    (2)棱锥

    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

    (3)棱台:

    定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

    表示:用各顶点字母,如五棱台

    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

    (4)圆柱:

    定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

    (5)圆锥:

    定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

    (6)圆台:

    定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

    (7)球体:

    定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

    2、空间几何体的三视图

    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

    注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

    俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    3、空间几何体的直观图——斜二测画法

    斜二测画法特点:

    ①原来与x轴平行的线段仍然与x平行且长度不变;

    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

    高一数学知识点总结归纳

    一:集合的含义与表示

    1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

    把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

    2、集合的中元素的三个特性:

    (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

    (2)元素的互异性:一个给定集合中的元素是的,不可重复的。

    (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

    3、集合的表示:{……}

    (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    (2)集合的表示方法:列举法与描述法。

    a、列举法:将集合中的元素一一列举出来{a,b,c……}

    b、描述法:

    ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

    {x?R|x—3>2},{x|x—3>2}

    ②语言描述法:例:{不是直角三角形的三角形}

    ③Venn图:画出一条封闭的曲线,曲线里面表示集合。

    4、集合的分类:

    (1)有限集:含有有限个元素的集合

    (2)无限集:含有无限个元素的集合

    (3)空集:不含任何元素的集合

    5、元素与集合的关系:

    (1)元素在集合里,则元素属于集合,即:a?A

    (2)元素不在集合里,则元素不属于集合,即:a¢A

    注意:常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集N—或N+

    整数集Z

    有理数集Q

    实数集R

    6、集合间的基本关系

    (1)。“包含”关系(1)—子集

    定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。


    请支持知识付费阅读!感谢!

    推荐度:

    登录后免费下载文档


    网课资源_学习资料_复习资料_知识点总结_电子课本—助梦资源网 » 高一数学知识点重点大全

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源均由会员上传,版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿商用。如侵犯了您的权益,请联系我们删除。
    下载地址过期失效怎么办?
    请联系qq客服或者微信客服,获取新下载地址,客服具体上班时间请查看网站首页!
    资源缺少内容怎么办?
    请联系qq客服或者微信客服,修补资源。
    获取其它帮助?
    请QQ联系我们

    发表评论

    如需获取其它帮助,请联系我们

    联系助梦资源网

    请选择支付方式

    ×
    微信支付
    余额支付
    ×
    微信扫码支付 0 元